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Objectives
• To understand chemical processes that link pollutant 

emissions to persistent secondary pollutants;
• To understand HOx sources and sinks;
• To test photochemical models and to examine heterogeneous 

effects of clouds and aerosols and HOx-NOx daytime and 
nighttime chemistry

• To investigate O3 budget and its vertical profile.

Experimental
Penn State ATHOS for OH and HO2 detection using laser-

induced fluorescence,  uncertainty: ±32%; detection limits: OH 
= 0.01 pptv; HO2 = 0.1 pptv (2σ confidence, 1-min integration)

Model Calculation
NASA LaRC 0-D photochemical box model constrained by 

observed 1-min data of  O3, CO, NO, VOCs, dew point, 
photolysis frequencies, T, and P.  Constrained model results 
(i.e., the model is constrained to observed H2O2, CH3OOH, 
HNO3, and PAN) are used in this study (INTEX-B Phase II only).

Summary
• OH and HO2 data were collected on 

the NASA DC-8 during INTEX-B.
• The box model under-predicted both 

OH and HO2, with a median obs-to-
mod OH ratio of 0.61 and a median 
obs/mod HO2 ratio of 0.65, which is 
similar to the results during INTEX-A, 
except above 8 km, where the model 
under-predicted HO2 during INTEX-
A.

• Main P(OH) was HO2+NO and 
O1D+H2O.  Main L(OH) was  
OH+CO/VOC.

• Main P(HOx) was O(1D)+H2O.  Main 
L(HOx) was HO2+HO2 and HO2+RO2
reactions.

• Slight net O3 loss (0.1-0 ppb/hr) 
below 7 km, and slight net O3
production (0-0.1 ppb/hr) above 7 
km.
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• Main P(O3):  HO2+NO, depending on NOx levles and P(HOx)

• Main L(O3):  O1D+H2O and O3+HO2 

• Net O3 production above 7 km: 0-0.1 ppb/hr 

• Net O3 loss belos 7 km: 0.1-0 ppb/hr

NOx dependence of observed HOxOH ~ ALT HO2 ~ ALT

• On average the model under-
predicted OH by a factor of 
1.6 and HO2 by a factor of 
1.5, which is significant 
considering combined 
observed and modeled 
uncertainties. 

• Little altitude and NOx
dependence of observed-to-
modeled OH and HO2 ratios 

• Observed HO2/OH  ratios 
and modeled HO2/OH ratios 
are in good agreement.

• Possible reasons for the 
discrepancies:

(1) HOx instrument error 
(calibration)

(2) missing or incorrect 
chemistry in the model

(3) instrument errors for 
measurements that are 
crucial for modeling HOx

(4) unmeasured atmospheric 
constituents that strongly 
influence HOx.

OH production and loss
Main P(OH): 
HO2+NO and O(1D)+H2O

Main L(OH):   
OH+CO/VOC

HO2 production and loss
Main P(HO2): 

OH+CO

Main L(HO2): 
HO2+NO and HO2-RO2

HOx production and loss
Main P(HOx): 

O(1D) + H2O

Main L(HOx): 
HO2+HO2/RO2

• Little NOx dependence of observe [OH] and [HO2] 
when [NOx] is lower than 50 ppt.

• When [NOx] is higher than 50 pptv, [OH] increases 
and [HO2] decreases as [NOx] increases.

• [OH] gradually increases from 0.05 pptv at 0 km to ~0.15 
at 10 km.  Above 10 km, it increases as altitude increases.

• [HO2] is about 8 ppt between 0 and 8 km.  Above 8 km 
HO2 decreases as altitude increases.

ATHOS in DC-8 forward pitATHOS inlet

• Higher HOx levels are due to higher HOx production rates.

ATHOS in 
DC-8’s 
forward 
cargo bay

ATHOS Nacelle
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HOx production rate on flight track
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Observed OH on flight track
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